Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.727
Filter
1.
Circ Res ; 134(10): 1259-1275, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38597112

ABSTRACT

BACKGROUND: GPCRs (G-protein-coupled receptors) play a central role in the regulation of smooth muscle cell (SMC) contractility, but the function of SMC-expressed orphan GPCR class C group 5 member C (GPRC5C) is unclear. The aim of this project is to define the role of GPRC5C in SMC in vitro and in vivo. METHODS: We studied the role of GPRC5C in the regulation of SMC contractility and differentiation in human and murine SMC in vitro, as well as in tamoxifen-inducible, SMC-specific GPRC5C knockout mice under basal conditions and in vascular disease in vivo. RESULTS: Mesenteric arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed ex vivo significantly reduced angiotensin II (Ang II)-dependent calcium mobilization and contraction, whereas responses to other relaxant or contractile factors were normal. In vitro, the knockdown of GPRC5C in human aortic SMC resulted in diminished Ang II-dependent inositol phosphate production and lower myosin light chain phosphorylation. In line with this, tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed reduced Ang II-induced arterial hypertension, and acute inactivation of GPRC5C was able to ameliorate established arterial hypertension. Mechanistically, we show that GPRC5C and the Ang II receptor AT1 dimerize, and knockdown of GPRC5C resulted in reduced binding of Ang II to AT1 receptors in HEK293 cells, human and murine SMC, and arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice. CONCLUSIONS: Our data show that GPRC5C regulates Ang II-dependent vascular contraction by facilitating AT1 receptor-ligand binding and signaling.


Subject(s)
Angiotensin II , Mice, Knockout , Muscle, Smooth, Vascular , Receptors, G-Protein-Coupled , Animals , Angiotensin II/pharmacology , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Humans , Muscle, Smooth, Vascular/metabolism , Mice , Cells, Cultured , Vasoconstriction , Myocytes, Smooth Muscle/metabolism , Male , Mice, Inbred C57BL , Mesenteric Arteries/metabolism , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/chemically induced , Hypertension/genetics , Muscle Contraction
2.
Eur J Pharmacol ; 972: 176543, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38582274

ABSTRACT

Cyclosporin A, an immunosuppressive agent, is extensively utilized for the prevention of transplant rejection and treat autoimmune disease in the clinic, despite its association with a high risk of hypertension development among patients. Resveratrol is a kind of non-flavonoid phenolic compound that widely exists in many plants. The aim of the present study was to investigate the mechanism by which resveratrol ameliorates cyclosporin A-induced hypertension. The arterial rings of the mesentery were incubated with cyclosporin A and resveratrol in vitro. Rats were administered cyclosporin A and/or resveratrol for 3 weeks in vivo. Blood pressure was measured via the tail arteries. Vasoconstriction curves were recorded using a sensitive myograph. The protein expression was evaluated through Western blotting. This study demonstrated that resveratrol mitigated the cyclosporin A-induced increase in blood pressure in rats. Furthermore, resveratrol markedly inhibited the cyclosporin A-induced upregulation of thromboxane A2 receptor-mediated vasoconstriction in the rat mesenteric artery both in vitro and in vivo. Moreover, resveratrol activated AMPK/SIRT1 and inhibited the MAPK/NF-κB signaling pathway. In conclusion, resveratrol restored the cyclosporin A-induced upregulation of the thromboxane A2 receptor and hypertension via the AMPK/SIRT1 and MAPK/NF-κB pathways in rats.


Subject(s)
AMP-Activated Protein Kinases , Cyclosporine , Hypertension , Mesenteric Arteries , NF-kappa B , Rats, Sprague-Dawley , Resveratrol , Sirtuin 1 , Up-Regulation , Animals , Resveratrol/pharmacology , Cyclosporine/pharmacology , Sirtuin 1/metabolism , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Hypertension/physiopathology , Male , NF-kappa B/metabolism , Up-Regulation/drug effects , Rats , AMP-Activated Protein Kinases/metabolism , Vasoconstriction/drug effects , Blood Pressure/drug effects , Signal Transduction/drug effects , Mitogen-Activated Protein Kinases/metabolism
3.
Physiol Rep ; 12(2): e15926, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38281732

ABSTRACT

Stimulation of the calcium-sensing receptor (CaSR) induces both vasoconstrictions and vasorelaxations but underlying cellular processes remain unclear. This study investigates expression and effect of stimulating the CaSR by increasing external Ca2+ concentration ([Ca2+ ]o ) on contractility of rat mesenteric arteries. Immunofluorescence studies showed expression of the CaSR in perivascular nerves, vascular smooth muscle cells (VSMCs), and vascular endothelium cells. Using wire myography, increasing [Ca2+ ]o from 1 to 10 mM induced vasorelaxations which were inhibited by the calcilytic Calhex-231 and partially dependent on a functional endothelium. [Ca2+ ]o -induced vasorelaxations were reduced by endothelial NO synthase (eNOS, L-NAME) and large conductance Ca2+ -activated K+ channels (BKCa , iberiotoxin), with their inhibitory action requiring a functional endothelium. [Ca2+ ]o -induced vasorelaxations were also markedly inhibited by an ATP-dependent K+ channel (KATP ) blocker (PNU37883), which did not require a functional endothelium to produce its inhibitory action. Inhibitor studies also suggested contributory roles for inward rectifying K+ channels (Kir ), Kv7 channels, and small conductance Ca2+ -activated K+ channels (SKCa ) on [Ca2+ ]o -induced vasorelaxations. These findings indicate that stimulation of the CaSR mediates vasorelaxations involving multiple pathways, including an endothelium-dependent pathway involving NO production and activation of BKCa channels and an endothelium-independent pathway involving stimulation of KATP channels.


Subject(s)
Receptors, Calcium-Sensing , Vasodilation , Animals , Rats , Adenosine Triphosphate/metabolism , Endothelium/metabolism , Endothelium, Vascular/metabolism , Mesenteric Arteries/metabolism , Receptors, Calcium-Sensing/metabolism
4.
Am J Physiol Heart Circ Physiol ; 326(1): H190-H202, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37921665

ABSTRACT

Myoendothelial feedback (MEF), the endothelium-dependent vasodilation following sympathetic vasoconstriction (mediated by smooth muscle to endothelium gap junction communication), has been well studied in resistance arteries of males, but not females. We hypothesized that MEF responses would be similar between the sexes, but different in the relative contribution of the underlying nitric oxide and hyperpolarization mechanisms, given that these mechanisms differ between the sexes in agonist-induced endothelium-dependent dilation. We measured MEF responses (diameter changes) of male and female first- to second-order mouse mesenteric arteries to phenylephrine (10 µM) over 30 min using isolated pressure myography ± blinded inhibition of nitric oxide synthase (NOS) using Nω-nitro-l-arginine methyl ester (l-NAME; 0.1-1.0 mM), hyperpolarization using 35 mM KCl, or transient receptor potential vanilloid 4 (TRPV4) channels using GSK219 (0.1-1.0 µM) or RN-1734 (30 µM). MEF was similar [%dilation (means ± SE): males = 26.7 ± 2.0 and females = 26.1 ± 1.9 at 15 min] and significantly inhibited by l-NAME (1.0 mM) at 15 min [%dilation (means ± SE): males = 8.2 ± 3.3, P < 0.01; females = 6.8 ± 1.9, P < 0.001] and over time (P < 0.01) in both sexes. l-NAME (0.1 mM) + 35 mM KCl nearly eliminated MEF in both sexes (P < 0.001-0.0001). Activation of TRPV4 with GSK101 (0.1-10 µM) induced similar dilation between the sexes. Inhibition of TRPV4, which is reportedly involved in the hyperpolarization mechanism, did not inhibit MEF in either sex. Similar expression of eNOS was found between the sexes with Western blot. Thus, MEF is prominent and similar in murine first- and second-order mesenteric resistance arteries of both sexes, and reliant primarily on NOS and secondarily on hyperpolarization, but not TRPV4.NEW & NOTEWORTHY We found that female mesenteric resistance arteries have similar postconstriction dilatory responses (i.e., myoendothelial feedback) to a sympathetic neurotransmitter analog as male arteries. Both sexes use nitric oxide synthase (NOS) and hyperpolarization, but not TRPV4, in this response. Moreover, the key protein involved in this pathway (eNOS) is similarly expressed in these arteries between the sexes. These similarities are surprising given that agonist-induced endothelium-dependent dilatory mechanisms differ in these arteries between the sexes.


Subject(s)
Nitric Oxide Synthase , TRPV Cation Channels , Mice , Male , Female , Animals , NG-Nitroarginine Methyl Ester/pharmacology , Feedback , TRPV Cation Channels/metabolism , Mesenteric Arteries/metabolism , Vasodilation , Nitric Oxide/metabolism , Endothelium, Vascular/metabolism
5.
Microcirculation ; 31(1): e12837, 2024 01.
Article in English | MEDLINE | ID: mdl-37985248

ABSTRACT

OBJECTIVE: This study investigated the actions of advanced glycated end-products (AGE), their receptors (RAGE), and NAD(P)H oxidase (Nox) subtypes 1, 2, and 4 on mechanisms of endothelium-dependent dilation of the rat cremaster muscle artery (CMA). METHODS: Immunofluorescence studies were used to examine expression of RAGE in rat arteries. ROS accumulation was measured using luminescence and fluorescence assays. Functional studies were performed using pressure myography. RESULTS: High levels of RAGE expression were shown in the endothelial cells of the CMA, compared with low endothelial expression in middle cerebral and mesenteric arteries and the aorta. Exogenous AGE (in vitro glycated bovine serum albumin) stimulated H2O2 accumulation in CMA, which was prevented by the RAGE antagonist FPS-ZM1, the NAD(P)H oxidase (Nox) inhibitor apocynin and inhibited by the Nox1/4 inhibitor setanaxib, but not the Nox2 inhibitor GSK2795039. In functional studies, AGE inhibited vasodilation of CMA stimulated by acetylcholine, sodium nitroprusside, and the BKCa activator NS1619, but not adenosine-induced dilation. FPS-ZM1, apocynin, and setanaxib prevented the inhibitory effects of AGE on responses to acetylcholine and NS-1619. CONCLUSION: These observations suggest RAGE are constitutively expressed in the endothelium of the rat CMA and may be activated by AGE to stimulate Nox1/4 and ROS formation with resulting inhibition of NO and BKCa-mediated endothelium-dependent dilation.


Subject(s)
Acetophenones , Benzamides , Endothelial Cells , Endothelium, Vascular , NADPH Oxidase 1 , NADPH Oxidase 4 , Animals , Rats , Acetylcholine/metabolism , Benzamides/administration & dosage , Dilatation , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/metabolism , Mesenteric Arteries/metabolism , Muscle, Skeletal/metabolism , NADPH Oxidases , Reactive Oxygen Species/metabolism , Vasodilation , NADPH Oxidase 4/metabolism , NADPH Oxidase 1/metabolism
6.
Life Sci ; 338: 122361, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38158040

ABSTRACT

AIMS: Overproduction of reactive oxygen species (ROS) is a pathologic hallmark of cyclophosphamide toxicity. For this reason, antioxidant compounds emerge as promising tools for preventing tissue damage induced by cyclophosphamide. We hypothesized that melatonin would display cytoprotective action in the vasculature by preventing cyclophosphamide-induced oxidative stress. MATERIALS AND METHODS: Male C57BL/6 mice (22-25 g) were injected with a single dose of cyclophosphamide (300 mg/kg; i.p.). Mice were pretreated or not with melatonin (10 mg/kg/day, i.p.), given during 4 days before cyclophosphamide injection. Functional (vascular reactivity) and oxidative/inflammatory patterns were evaluated at 24 h in resistance arteries. The antioxidant action of melatonin was assessed in vitro in cultured vascular smooth muscle cells (VSMCs) of mesenteric arteries. KEY FINDINGS: Cyclophosphamide induced ROS generation in both mesenteric arterial bed (MAB) and cultured VSMCs, and this was normalized by melatonin. Cyclophosphamide-induced ROS generation and lipoperoxidation in the bladder and kidney was also prevented by melatonin. Increased levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 were detected in the MAB of cyclophosphamide-treated mice, all of which were prevented by melatonin. Functional assays using second-order mesenteric arteries of cyclophosphamide-treated mice revealed a decrease in vascular contractility. Melatonin prevented vascular hypocontractility in the cyclophosphamide group. Melatonin partially prevented the decrease in myeloperoxidase (MPO) and N-acetyl-beta-D-glucosaminidase (NAG) activities in the MAB of the cyclophosphamide group. SIGNIFICANCE: Melatonin may constitute a novel and promising therapeutic approach for management of the toxic effects induced by cyclophosphamide in the vasculature.


Subject(s)
Melatonin , Mice , Male , Animals , Reactive Oxygen Species/pharmacology , Melatonin/therapeutic use , Antioxidants/metabolism , Mice, Inbred C57BL , Cyclophosphamide/toxicity , Oxidative Stress , Mesenteric Arteries/metabolism
7.
Physiol Rep ; 11(22): e15884, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38010199

ABSTRACT

Cooling causes cutaneous dilatation to restrain cold-induced constriction and prevent tissue injury. Cooling increases communication through myoendothelial gap junctions (MEGJs), thereby increasing endothelium-derived hyperpolarization (EDH)-type dilatation. EDH is initiated by calcium-activated potassium channels (KCa ) activated by endothelial stimuli or muscle-derived mediators traversing MEGJs (myoendothelial feedback). The goal of this study was to determine the individual roles of KCa with small (SK3) and intermediate (IK1) conductance in cooling-induced dilatation. Vasomotor responses of mice isolated cutaneous tail arteries were analyzed by pressure myography at 37°C and 28°C. Cooling increased acetylcholine-induced EDH-type dilatation during inhibition of NO and prostacyclin production. IK1 inhibition did not affect dilatations to acetylcholine, whereas SK3 inhibition inhibited dilatation at both temperatures. Cooling uncovered myoendothelial feedback to inhibit constrictions in U46619. IK1 inhibition did not affect U46619 constrictions, whereas SK3 inhibition abolished the inhibitory effect of cooling without affecting U46619 constriction at 37°C. Immunoblots confirmed SK3 expression, which was localized (immunofluorescence) to holes in the internal elastic lamina consistent with myoendothelial projections. Immunoblots and Immunofluorescence did not detect IK1. Studies in non-cutaneous arteries have highlighted the predominant role of IK1 in EDH-type dilatation. Cutaneous arteries are distinctly reliant on SK3, which may enable EDH-type dilation to be amplified by cooling.


Subject(s)
Acetylcholine , Vasodilation , Mice , Male , Animals , Vasodilation/physiology , Acetylcholine/pharmacology , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Intermediate-Conductance Calcium-Activated Potassium Channels , Tail/metabolism , Arteries/metabolism , Endothelium, Vascular/metabolism , Mesenteric Arteries/metabolism
8.
Sci Rep ; 13(1): 20407, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37989780

ABSTRACT

The arterial myogenic response to intraluminal pressure elicits constriction to maintain tissue perfusion. Smooth muscle [Ca2+] is a key determinant of constriction, tied to L-type (CaV1.2) Ca2+ channels. While important, other Ca2+ channels, particularly T-type could contribute to pressure regulation within defined voltage ranges. This study examined the role of one T-type Ca2+ channel (CaV3.1) using C57BL/6 wild type and CaV3.1-/- mice. Patch-clamp electrophysiology, pressure myography, blood pressure and Ca2+ imaging defined the CaV3.1-/- phenotype relative to C57BL/6. CaV3.1-/- mice had absent CaV3.1 expression and whole-cell current, coinciding with lower blood pressure and reduced mesenteric artery myogenic tone, particularly at lower pressures (20-60 mmHg) where membrane potential is hyperpolarized. This reduction coincided with diminished Ca2+ wave generation, asynchronous events of Ca2+ release from the sarcoplasmic reticulum, insensitive to L-type Ca2+ channel blockade (Nifedipine, 0.3 µM). Proximity ligation assay (PLA) confirmed IP3R1/CaV3.1 close physical association. IP3R blockade (2-APB, 50 µM or xestospongin C, 3 µM) in nifedipine-treated C57BL/6 arteries rendered a CaV3.1-/- contractile phenotype. Findings indicate that Ca2+ influx through CaV3.1 contributes to myogenic tone at hyperpolarized voltages through Ca2+-induced Ca2+ release tied to the sarcoplasmic reticulum. This study helps establish CaV3.1 as a potential therapeutic target to control blood pressure.


Subject(s)
Calcium Channels, T-Type , Nifedipine , Mice , Animals , Nifedipine/pharmacology , Nifedipine/metabolism , Calcium Signaling , Vasoconstriction , Mice, Inbred C57BL , Mesenteric Arteries/metabolism , Niacinamide/metabolism , Muscle, Smooth, Vascular/metabolism , Calcium/metabolism , Calcium Channels, T-Type/metabolism
9.
Aging Cell ; 22(11): e14002, 2023 11.
Article in English | MEDLINE | ID: mdl-37837625

ABSTRACT

Aging is a major risk factor for cardiovascular diseases. Our previous studies demonstrate that aging impairs the caveolar T-type CaV 3.2-RyR axis for extracellular Ca2+ influx to trigger Ca2+ sparks in vascular smooth muscle cells (VSMCs). We hypothesize that the administration of senolytics, which can selectively clear senescent cells, could preserve the caveolar CaV 3.2-RyR axis in aging VSMCs. In this study, 10-month-old mice were administered the senolytics cocktail consisting of dasatinib (5 mg/kg) and quercetin (50 mg/kg) or vehicle bi-weekly for 4 months. Using VSMCs from mouse mesenteric arteries, we found that Ca2+ sparks were diminished after caveolae disruption by methyl-ß-cyclodextrin (10 mM) in cells from D + Q treated but not vehicle-treated 14-month-old mice. D + Q treatment promoted the expression of CaV 3.2 in 14-month-old mesenteric arteries. Structural analysis using electron tomography and immunofluorescence staining revealed the remodeling of caveolae and co-localization of CaV 3.2-Cav-1 in D + Q treatment aged mesenteric arteries. In keeping with theoretical observations, Cav 3.2 channel inhibition by Ni2+ (50 µM) suppressed Ca2+ in VSMCs from the D + Q group, with no effect observed in vehicle-treated arteries. Our study provides evidence that age-related caveolar CaV 3.2-RyR axis malfunction can be alleviated by pharmaceutical intervention targeting cellular senescence. Our findings support the potential of senolytics for ameliorating age-associated cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Caveolae , Animals , Mice , Caveolae/metabolism , Mesenteric Arteries/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Senotherapeutics
10.
Vascul Pharmacol ; 153: 107231, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37730143

ABSTRACT

Göttingen Minipigs (GM) are used as an important preclinical model for cardiovascular safety pharmacology and for evaluation of cardiovascular drug targets. To improve the translational value of the GM model, the current study represents a basic characterization of vascular responses to endothelial regulators and sympathetic, parasympathetic, and sensory neurotransmitters in different anatomical origins. The aim of the current comparative and descriptive study is to use myography to characterize the vasomotor responses of coronary artery isolated from GM and compare the responses to those obtained from parallel studies using cerebral and mesenteric arteries. The selected agonists for sympathetic (norepinephrine), parasympathetic (carbachol), sensory (calcitonin gene-related peptide, CGRP), and endothelial pathways (endothelin-1, ET-1, and bradykinin) were used for comparison. Further, the robust nature of the vasomotor responses was evaluated after 24 h of cold storage of vascular tissue mimicking the situation under which human biopsies are often kept before experiments or grafting is feasible. Results show that bradykinin and CGRP consistently dilated, and endothelin consistently contracted artery segments from coronary, cerebral, and mesenteric origin. By comparison, norepinephrine and carbachol, had responses that varied with the anatomical source of the tissues. To support the basic characterization of GM vasomotor responses, we demonstrated the presence of mRNA encoding selected vascular receptors (CGRP- and ETA-receptors) in fresh artery segments. In conclusion, the vasomotor responses of isolated coronary, cerebral, and mesenteric arteries to selected agonists of endothelial, sympathetic, parasympathetic, and sensory pathways are different and the phenotypes are similar to sporadic human findings.


Subject(s)
Bradykinin , Calcitonin Gene-Related Peptide , Swine , Animals , Humans , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Gene-Related Peptide/pharmacology , Swine, Miniature/metabolism , Bradykinin/pharmacology , Bradykinin/metabolism , Carbachol/metabolism , Muscle, Smooth, Vascular/metabolism , Norepinephrine/pharmacology , Norepinephrine/metabolism , Mesenteric Arteries/metabolism , Vasodilation
11.
J Am Heart Assoc ; 12(16): e030353, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37581395

ABSTRACT

Background The mechanisms determining vascular tone are still not completely understood, even though it is a significant factor in blood pressure management. Many circulating proteins have a significant impact on controlling vascular tone. Progranulin displays anti-inflammatory effects and has been extensively studied in neurodegenerative illnesses. We investigated whether progranulin sustains the vascular tone that helps regulate blood pressure. Methods and Results We used male and female C57BL6/J wild type (progranulin+/+) and B6(Cg)-Grntm1.1Aidi/J (progranulin-/-) to understand the impact of progranulin on vascular contractility and blood pressure. We found that progranulin-/- mice display elevated blood pressure followed by hypercontractility to noradrenaline in mesenteric arteries, which is restored by supplementing the mice with recombinant progranulin. In ex vivo experiments, recombinant progranulin attenuated the vascular contractility to noradrenaline in male and female progranulin+/+ arteries, which was blunted by blocking EphrinA2 or Sortilin1. To understand the mechanisms whereby progranulin evokes anticontractile effects, we inhibited endothelial factors. N(gamma)-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor) prevented the progranulin effects, whereas indomethacin (cyclooxygenase inhibitor) affected only the contractility in arteries incubated with vehicle, indicating that progranulin increases nitric oxide and decreases contractile prostanoids. Finally, recombinant progranulin induced endothelial nitric oxide synthase phosphorylation and nitric oxide production in isolated mesenteric endothelial cells. Conclusions Circulating progranulin regulates vascular tone and blood pressure via EphrinA2 and Sortilin1 receptors and endothelial nitric oxide synthase activation. Collectively, our data suggest that deficiency in progranulin is a cardiovascular risk factor and that progranulin might be a new therapeutic avenue to treat high blood pressure.


Subject(s)
Nitric Oxide Synthase Type III , Nitric Oxide , Male , Female , Mice , Animals , Nitric Oxide Synthase Type III/metabolism , Blood Pressure , Progranulins/pharmacology , Nitric Oxide/metabolism , Endothelial Cells/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Mesenteric Arteries/metabolism , Endothelium, Vascular/metabolism , Norepinephrine
12.
J Hypertens ; 41(10): 1554-1564, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37432904

ABSTRACT

OBJECTIVE: Endogenous ouabain (EO) increases in some patients with hypertension and in rats with volume-dependent hypertension. When ouabain binds to Na + K + -ATPase, cSrc is activated, which leads to multieffector signaling activation and high blood pressure (BP). In mesenteric resistance arteries (MRA) from deoxycorticosterone acetate (DOCA)-salt rats, we have demonstrated that the EO antagonist rostafuroxin blocks downstream cSrc activation, enhancing endothelial function and lowering oxidative stress and BP. Here, we examined the possibility that EO is involved in the structural and mechanical alterations that occur in MRA from DOCA-salt rats. METHODS: MRA were taken from control, vehicle-treated DOCA-salt or rostafuroxin (1 mg/kg per day, for 3 weeks)-treated DOCA-salt rats. Pressure myography and histology were used to evaluate the mechanics and structure of the MRA, and western blotting to assess protein expression. RESULTS: DOCA-salt MRA exhibited signs of inward hypertrophic remodeling and increased stiffness, with a higher wall:lumen ratio, which were reduced by rostafuroxin treatment. The enhanced type I collagen, TGFß1, pSmad2/3 Ser465/457 /Smad2/3 ratio, CTGF, p-Src Tyr418 , EGFR, c-Raf, ERK1/2 and p38MAPK protein expression in DOCA-salt MRA were all recovered by rostafuroxin. CONCLUSION: A process combining Na + K + -ATPase/cSrc/EGFR/Raf/ERK1/2/p38MAPK activation and a Na + K + -ATPase/cSrc/TGF-1/Smad2/3/CTGF-dependent mechanism explains how EO contributes to small artery inward hypertrophic remodeling and stiffening in DOCA-salt rats. This result supports the significance of EO as a key mediator for end-organ damage in volume-dependent hypertension and the efficacy of rostafuroxin in avoiding remodeling and stiffening of small arteries.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Ouabain/pharmacology , Blood Pressure/physiology , Desoxycorticosterone , Hypertension/metabolism , Mesenteric Arteries/metabolism , Acetates , Adenosine Triphosphatases , ErbB Receptors
13.
Cell Mol Life Sci ; 80(8): 210, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37460898

ABSTRACT

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.


Subject(s)
Endothelial Cells , Myocardial Infarction , Humans , Autophagy , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Mesenteric Arteries/metabolism , Myocardial Infarction/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction , Vasodilation , Animals , Mice
14.
J Hypertens ; 41(7): 1201-1214, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37115907

ABSTRACT

OBJECTIVE: Small arteries from different organs vary with regard to the mechanisms that regulate vasoconstriction. This study investigated the impact of advanced age on the regulation of vasoconstriction in isolated human small arteries from kidney cortex and periintestinal mesenteric tissue. METHODS: Renal and mesenteric tissues were obtained from patients (mean age 71 ±â€Š9 years) undergoing elective surgery. Furthermore, intrarenal and mesenteric arteries from young and aged mice were studied. Arteries were investigated by small vessel myography and western blot. RESULTS: Human intrarenal arteries (h-RA) showed higher stretch-induced tone and higher reactivity to α 1 adrenergic receptor stimulation than human mesenteric arteries (h-MA). Rho-kinase (ROK) inhibition resulted in a greater decrease in Ca 2+ and depolarization-induced tone in h-RA than in h-MA. Basal and α 1 adrenergic receptor stimulation-induced phosphorylation of the regulatory light chain of myosin (MLC 20 ) was higher in h-RA than in h-MA. This was associated with higher ROK-dependent phosphorylation of the regulatory subunit of myosin light-chain-phosphatase (MLCP), MYPT1-T853. In h-RA phosphorylation of ribosomal S6-kinase II (RSK2-S227) was significantly higher than in h-MA. Stretch-induced tone and RSK2 phosphorylation was also higher in interlobar arteries (m-IAs) from aged mice than in respective vessels from young mice and in murine mesenteric arteries (m-MA) from both age groups. CONCLUSION: Vasoconstriction in human intrarenal arteries shows a greater ROK-dependence than in mesenteric arteries. Activation of RSK2 may contribute to intrarenal artery tone dysregulation associated with aging. Compared with h-RA, h-MA undergo age-related remodeling leading to a reduction of the contractile response to α 1 adrenergic stimulation.


Subject(s)
Receptors, Adrenergic, alpha-1 , rho-Associated Kinases , Humans , Mice , Animals , Middle Aged , Aged , Aged, 80 and over , rho-Associated Kinases/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Mesenteric Arteries/metabolism , Signal Transduction , Vasoconstriction , Myosins/metabolism , Phosphorylation , Myosin-Light-Chain Phosphatase/metabolism
15.
Clin Sci (Lond) ; 137(7): 543-559, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36972169

ABSTRACT

Poor disease outcomes and lethality are directly related to endothelial dysfunction in betacoronavirus infections. Here, we investigated the mechanisms underlying the vascular dysfunction caused by the betacoronaviruses MHV-3 and SARS-CoV-2. Wild-type C57BL/6 (WT) and knockout mice for inducible nitric oxide synthase (iNOS-/-) or TNF receptor 1 (TNFR1-/-) were infected with MHV-3, and K18-hACE2 transgenic mice expressing human ACE2 were infected with SARS-CoV-2. Isometric tension was used to evaluate vascular function. Protein expression was determined by immunofluorescence. Tail-cuff plethysmography and Doppler were used to assess blood pressure and flow, respectively. Nitric oxide (NO) was quantified with the DAF probe. ELISA was used to assess cytokine production. Survival curves were estimated using Kaplan-Meier. MHV-3 infection reduced aortic and vena cava contractility, arterial blood pressure, and blood flow, resulting in death. Resistance mesenteric arteries showed increased contractility. The contractility of the aorta was normalized by removing the endothelium, inhibiting iNOS, genetically deleting iNOS, or scavenging NO. In the aorta, iNOS and phospho-NF-kB p65 subunit expression was enhanced, along with basal NO production. TNF production was increased in plasma and vascular tissue. Genetic deletion of TNFR1 prevented vascular changes triggered by MHV-3, and death. Basal NO production and iNOS expression were also increased by SARS-CoV-2. In conclusion, betacoronavirus induces an endothelium-dependent decrease in contractility in macro-arteries and veins, leading to circulatory failure and death via TNF/iNOS/NO. These data highlight the key role of the vascular endothelium and TNF in the pathogenesis and lethality of coronaviruses.


Subject(s)
COVID-19 , Shock , Mice , Humans , Animals , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , SARS-CoV-2/metabolism , Mice, Inbred C57BL , Endothelium, Vascular/metabolism , Nitric Oxide/metabolism , Mice, Transgenic , Mesenteric Arteries/metabolism
16.
Drug Res (Stuttg) ; 73(3): 137-145, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36574776

ABSTRACT

BACKGROUND: Ischemia/reperfusion has been reported to further damage the intestine reperfusion injury (IRI) and cause multiple distal organ dysfunction through oxidative stress, inflammation, and apoptosis. Cysteamine is known to inhibit oxidative stress, inflammatory cytokines and apoptosis. This experiment was designed to evaluate the role of cysteamine against IRI in rats METHODS: Thirty-two Wistar rat strains were assigned to four groups: sham, Intestinal-reperfusion injury (IRI), 50 mg/kg and 100 mg/kg cysteamine treatment IRI. A 5 cm segment of terminal ileum was twisted 360° clockwise along the mesentery for 45 minutes to induce ischemia before detorsion. Tissues were preserved for biochemical evaluation and histology 4 hours after detorsion. Activities of GPx, GSH, protein and non-protein thiol, H2O2, MDA were evaluated. Serum concentration of nitrite, MPO, ALT, AST TNF-alpha and IL-6 were measured. Caspase 3 and bax were evaluated by immunohistochemistry. Statistical significance was set as p<0.05 RESULTS: Significant (p<0.05) increase in H2O2, MDA and nitrite but reduction in GPx, GSH, protein thiol and non-protein thiol in the IRI rats was reversed by 50 and 100 mg/kg cysteamine. Serum MPO, TNF-α, IL6, AST and ALT was significantly elevated in IRI while the rats treated with cysteamine showed a significant decrease (p<0.05) in the activities of these inflammatory and hepatic injury markers. CONCLUSION: Cysteamine mitigate IRI by enhancing intracellular antioxidant defense system, inhibiting inflammatory mediators and intestinal tissue expression of pro-apoptotic protein.


Subject(s)
Cysteamine , Reperfusion Injury , Rats , Animals , Cysteamine/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Hydrogen Peroxide , Nitrites , Rats, Wistar , Intestines/blood supply , Intestines/pathology , Mesenteric Arteries/metabolism , Mesenteric Arteries/pathology
17.
J Gen Physiol ; 155(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36484717

ABSTRACT

Acid-sensing ion channel 1a (ASIC1a) belongs to a novel family of proton-gated cation channels that are permeable to both Na+ and Ca2+. ASIC1a is expressed in vascular smooth muscle and endothelial cells in a variety of vascular beds, yet little is known regarding the potential impact of ASIC1a to regulate local vascular reactivity. Our previous studies in rat mesenteric arteries suggest ASIC1a does not contribute to agonist-induced vasoconstriction but may mediate a vasodilatory response. The objective of the current study is to determine the role of ASIC1a in systemic vasodilatory responses by testing the hypothesis that the activation of endothelial ASIC1a mediates vasodilation of mesenteric resistance arteries through an endothelium-dependent hyperpolarization (EDH)-related pathway. The selective ASIC1a antagonist psalmotoxin 1 (PcTX1) largely attenuated the sustained vasodilatory response to acetylcholine (ACh) in isolated, pressurized mesenteric resistance arteries and ACh-mediated Ca2+ influx in freshly isolated mesenteric endothelial tubes. Similarly, basal tone was enhanced and ACh-induced vasodilation blunted in mesenteric arteries from Asic1a knockout mice. ASIC1a colocalizes with intermediate- and small-conductance Ca2+-activated K+ channels (IKCa and SKCa, respectively), and the IKCa/SKCa-sensitive component of the ACh-mediated vasodilation was blocked by ASIC1a inhibition. To determine the role of ASIC1a to activate IKCa/SKCa channels, we measured whole-cell K+ currents using the perforated-patch clamp technique in freshly isolated mesenteric endothelial cells. Inhibition of ASIC1a prevented ACh-induced activation of IKCa/SKCa channels. The ASIC1 agonist, α/ß-MitTx, activated IKCa/SKCa channels and induced an IKCa/SKCa-dependent vasodilation. Together, the present study demonstrates that ASIC1a couples to IKCa/SKCa channels in mesenteric resistance arteries to mediate endothelium-dependent vasodilation.


Subject(s)
Acid Sensing Ion Channels , Endothelium, Vascular , Potassium Channels, Calcium-Activated , Vasodilation , Animals , Mice , Rats , Acetylcholine/metabolism , Acid Sensing Ion Channels/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Mesenteric Arteries/metabolism , Potassium Channels, Calcium-Activated/metabolism , Vasodilation/genetics , Vasodilation/physiology
18.
Acta Biochim Biophys Sin (Shanghai) ; 54(9): 1268-1277, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36082933

ABSTRACT

Endothelial calcium (Ca 2+) signaling plays a major role in regulating vasodilation in response to fluid shear stress (FSS) generated by blood flow. Local Ca 2+ influx through single transient receptor potential channel subfamily V member 4 (TRPV4) (termed "sparklets") activated by low concentrations of chemical and biological stimuli has been revealed to modulate vascular function. However, the range in which FSS can initiate TRPV4 sparklets to induce vasodilation is unknown. Here, we assess the activity of TPRV4 sparklets induced by various physiological levels of FSS and investigate the mechanisms involving these Ca 2+ signals in FSS-induced vasodilation. Intact small mesenteric arteries are used for Ca 2+ imaging with a GCaMP2(TRPV4-KO) mouse model and high-speed confocal systems. Markedly increased local Ca 2+ signals are observed in the endothelium under 4-8 dyne/cm 2 FSS, whereas FSS >8 dyne/cm 2 causes global Ca 2+ influx. Further analysis shows that TRPV4 channels form a four-channel group to mediate Ca 2+ sparklets under certain levels of FSS. The large Ca 2+ influx hyperpolarizes endothelial cells by stimulating intermediate (IK)- and small (SK)-conductance Ca 2+-sensitive potassium channels, leading to hyperpolarization of the surrounding smooth muscle cells and ultimately causing endothelium-dependent vasodilation. In conclusion, Ca 2+ influx transits through a small number of endothelial TRPV4 channels opened by certain levels of FSS, which activates the Ca 2+-sensitive IK and SK channels to cause vasodilation.


Subject(s)
Endothelial Cells , TRPV Cation Channels , Mice , Animals , TRPV Cation Channels/metabolism , Endothelial Cells/metabolism , Calcium Signaling/physiology , Mesenteric Arteries/metabolism , Vasodilation/physiology , Endothelium, Vascular/metabolism
19.
J Hypertens ; 40(11): 2180-2191, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35969208

ABSTRACT

OBJECTIVE: To investigate the role of angiotensin II/AT 1 receptor signaling and/or cyclooxygenase-2 (COX-2) activation on vascular remodeling and stiffening of the mesenteric resistance arteries (MRA) of ouabain-treated rats. METHODS: Ouabain-treated (OUA, 30 µg kg/day for 5 weeks) and vehicle (VEH)-treated Wistar rats were co-treated with losartan (LOS, AT 1 R antagonist), nimesulide (NIM, COX-2 inhibitor) or hydralazine hydrochloride plus hydrochlorothiazide. MRA structure and mechanics were assessed with pressure myography and histology. Picrosirius red staining was used to determine the total collagen content. Western blotting was used to detect the expression of collagen I/III, MMP-2, Src, NFκB, Bax, Bcl-2 and COX-2. Reactive oxygen species (ROS) and plasma angiotensin II levels were measured by fluorescence and ELISA, respectively. RESULTS: Blockade of AT 1 R or inhibition of COX-2 prevented ouabain-induced blood pressure elevation. Plasma angiotensin II level was higher in OUA than in VEH. LOS, but not hydralazine hydrochloride with hydrochlorothiazide, prevented inward hypotrophic remodeling, increased collagen deposition and stiffness, and oxidative stress in OUA MRA. LOS prevented the reduction in the total number of nuclei in the media layer and the Bcl-2 expression induced by OUA in MRA. The higher pSrc/Src ratio, NFκB/IκB ratio, and COX-2 expression in OUA MRA were also prevented by LOS. Likewise, COX-2 inhibition prevented vascular remodeling, mechanical changes, oxidative stress and inflammation in OUA MRA. CONCLUSION: The results suggest that, regardless of hemodynamic adjustments, the angiotensin II/AT 1 R/pSrc/ROS/NFκB/COX-2 pathway is involved in the development of MRA inward hypotrophic remodeling and stiffness in ouabain-treated rats.


Subject(s)
Angiotensin II , Cyclooxygenase 2 , Ouabain , Vascular Remodeling , Vascular Resistance , Angiotensin II/pharmacology , Animals , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Hydrochlorothiazide/pharmacology , Losartan/pharmacology , Matrix Metalloproteinase 2/metabolism , Mesenteric Arteries/metabolism , Ouabain/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , bcl-2-Associated X Protein/metabolism
20.
Front Biosci (Landmark Ed) ; 27(6): 191, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35748267

ABSTRACT

BACKGROUND: Although the mesenteric artery plays a key role in regulating peripheral blood pressure, the molecular mechanisms that underlie the development of essential hypertension are not yet fully understood. MATERIALS AND METHODS: We explored candidate genes for hypertension using three related strains of spontaneously hypertensive rats (SHRs) that mimic human essential hypertension. In this study we used DNA microarrays, a powerful tool for studying genetic diseases, to compare gene expression in the mesenteric artery of three SHR substrains: SHR, stroke-prone SHR (SHRSP), and malignant SHRSP (M-SHRSP). RESULTS: Compared to normotensive 6-week old Wistar Kyoto rats (WKY), higher blood pressure correlated with overexpression of 31 genes and with down regulation of 24 genes. Adam23, which negatively regulates potassium current, and the potassium channel genes, Kcnc2 and Kcnq5, were associated with the onset of hypertension. In addition, Spock2 and Agtrap were identified as strengtheners of hypertension by analyzing up and down regulated genes at 9-weeks of age. CONCLUSIONS: Adam23, Kcnc2 and Kcnq5 appear to be factors for the onset of hypertension, while Spock2 and Agtrap are as factors that strengthen hypertension. These findings contribute to our understanding of the pathophysiology of hypertension and to the development of treatment for this condition.


Subject(s)
Hypertension , Animals , Blood Pressure/genetics , Essential Hypertension/metabolism , Hypertension/genetics , Hypertension/metabolism , Mesenteric Arteries/metabolism , Oligonucleotide Array Sequence Analysis , Rats , Rats, Inbred SHR
SELECTION OF CITATIONS
SEARCH DETAIL
...